On the usefulness of an index due to Leray for studying the intersections of Lagrangian and symplectic paths

نویسنده

  • Maurice de Gosson
چکیده

Using the ideas of Keller, Maslov introduced in the mid-1960’s an index for Lagrangian loops, whose definition was clarified by Arnold. Leray extended Arnold results by defining an index depending on two paths of Lagrangian planes with transversal endpoints. We show that the combinatorial and topological properties of Leray’s index suffice to recover all Lagrangian and symplectic intersection indices commonly used in symplectic geometry and its applications to Hamiltonian and quantum mechanics. As a by-product we obtain a new simple formula for the Hörmander index, and a definition of the Conley–Zehnder index for symplectic paths with arbitrary endpoints. Our definition leads to a formula for the Conley–Zehnder index of a product of two paths. © 2009 Elsevier Masson SAS. All rights reserved. Résumé Utilisant les idées de Keller, Maslov introduisit au milieu des années 1960 un indice pour les lacets lagrangiens ; Arnold clarifia par la suite la définition de Maslov. Leray étendit les résultats de Arnold en définissant un indice dépendant de deux chemins lagrangiens dont les extrêmités sont transversales. Nous montrons que les propriétés combinatoires et topologiques qui caractérisent l’indice de Leray sont suffisantes pour retrouver tous les indices d’intersection lagrangiens et symplectiques communément utilisés en géométrie symplectique, et ses applications à la mécanique hamiltonienne et quantique. Nous obtenons en outre une nouvelle formule simple pour l’indice de Hörmander, ainsi qu’une définition de l’indice de Conley–Zehnder pour les chemins symplectiques sans condition de transversalité. Notre définition permet en outre de démontrer une formula pour l’indice de Conley–Zehnder du produit des deux chemins symplectiques. © 2009 Elsevier Masson SAS. All rights reserved. MSC: 53D35; 37J05; 81S30

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Maslov Index of Symplectic Paths That Are Not Transversal to the Maslov Cycle. Semi-riemannian Index Theorems in the Degenerate Case

The Maslov index of a symplectic path, under a certain transversality assumption, is given by an algebraic count of the intersections of the path with a subvariety of the Lagrangian Grassmannian called the Maslov cycle. In these notes we use the notion of generalized signatures at a singularity of a smooth curve of symmetric bilinear forms to determine a formula for the computation of the Maslo...

متن کامل

Lagrangian intersections, 3-manifolds with boundary, and the Atiyah-Floer conjecture

Self-adjoint extensions of D correspond to Lagrangian subspaces of V and, moreover, the kernel of D determines such a Lagrangian subspace whenever D has a closed range. IfD is a symmetric differential operator on a manifold with boundary then, by partial integration, the form ω is given by an integral over the boundary. For example, if D is the Hessian of the symplectic action functional on pat...

متن کامل

M ar 2 00 7 A topological theory of Maslov indices for Lagrangian and symplectic paths

We propose a topological theory of the Maslov index for lagrangian and symplectic paths based on a minimal system of axioms. We recover , as particular cases, the Hörmander and the Robbin–Salomon indices.

متن کامل

Symplectic Field Theory Approach to Studying Ergodic Measures Related with Nonautonomous Hamiltonian Systems

An approach to studying ergodic properties of time-dependent periodic Hamiltonian flows on symplectic metric manifolds is developed. Such flows have applications in mechanics and mathematical physics. Based both on J. Mather’s results [9] about homology of probability invariant measures minimizing some Lagrangian functionals and on the symplectic field theory devised by A. Floer and others [3]–...

متن کامل

Symplectic Spinors, Holonomy and Maslov Index

In this note it is shown that the Maslov Index for pairs of Lagrangian Paths as introduced by Cappell, Lee and Miller ([1]) appears by parallel transporting elements of (a certain complex line-subbundle of) the symplectic spinorbundle over Euclidean space, when pulled back to an (embedded) Lagrangian submanifold L, along closed or non-closed paths therein. More precisely, the CLM-Index mod 4 de...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008